Electronics for Beginners: A Practical Introduction to Schematics, Circuits, and Microcontrollers PDF Free Download



Jump start your journey with electronics! If you’ve thought about getting into electronics, but don’t know where to start, this book gives you the information you need. Starting with the basics of electricity and circuits, you’ll be introduced to digital electronics and microcontrollers, capacitors and inductors, and amplification circuits – all while gaining the basic tools and information you need to start working with low-power electronics.

Electronics for Beginners walks the fine line of focusing on projects-based learning, while still keeping electronics front and center. You’ll learn the mathematics of circuits in an uncomplicated fashion and see how schematics map on to actual breadboards. Written for the absolute beginner, this book steers clear of being too math heavy, giving readers the key information they need to get started on their electronics journey.
What You’ll Learn
  • Review the basic “patterns” of resistor usage―pull up, pull down, voltage divider, and current limiter
  • Understand the requirements for circuits and how they are put together
  • Read and differentiate what various parts of the schematics do
  • Decide what considerations to take when choosing components
  • Use all battery-powered circuits, so projects are safe
Who This Book Is For
Makers, students, and beginners of any age interested in getting started with electronics.


Table of Contents

About the Author
About the Technical Reviewer
Chapter 1: Introduction
1.1 Working the Examples
1.2 Initial Tools and Supplies
1.3 Safety Guidelines
1.4 Electrostatic Discharge
1.5 Using Your Multimeter Correctly
Chapter 2: Dealing with Units
2.1 SI Units
2.2 Scaling Units
2.3 Using Abbreviations
2.4 Significant Figures
Apply What You Have Learned
Part I: Basic Concepts
Chapter 3: What Is Electricity?
3.1 Charge
3.2 Measuring Charge and Current
3.3 AC vs. DC
3.4 Which Way Does Current Flow?
Apply What You Have Learned
Chapter 4: Voltage and Resistance
4.1 Picturing Voltage
4.2 Volts Are Relative
4.3 Relative Voltages and Ground Potential
4.4 Resistance
Apply What You Have Learned
Chapter 5: Your First Circuit
5.1 Circuit Requirements
5.2 Basic Components
5.3 Creating Your First Circuit
5.4 Adding Wires
5.5 Drawing Circuits
5.6 Drawing the Ground
Apply What You Have Learned
Chapter 6: Constructing and Testing Circuits
6.1 The Solderless Breadboard
6.2 Putting a Circuit onto a Breadboard
6.3 Using Fewer Wires
6.4 Testing Circuits with a Multimeter
6.5 Using a Multimeter with a Breadboard
6.6 Measuring Current with a Multimeter
6.7 Using a Power Regulator
Apply What You Have Learned
Chapter 7: Analyzing Series and Parallel Circuits
7.1 Series Circuits
7.2 Parallel Circuits
7.2.1 Kirchhoff’s Current Law
7.2.2 Kirchhoff’s Voltage Law
7.3 Equivalent Parallel Resistance
7.4 Wires in a Circuit
7.5 Wiring Parallel Circuits onto a Breadboard
Apply What You Have Learned
Chapter 8: Diodes and How to Use Them
8.1 Basic Diode Behavior
8.2 Circuit Calculations with Diodes in Series
8.3 Circuit Calculations with Diodes in Parallel
8.4 Diode Short Circuits
8.5 Nonconducting Diodes
8.6 Usage of Diodes
8.7 Other Types of Diode Protection
8.8 Zener Diodes
8.9 Schottky Diode
8.10 Diode-Like Behavior in Other Components
Apply What You Have Learned
Chapter 9: Basic Resistor Circuit Patterns
9.1 Switches and Buttons
9.2 Current-Limiting Resistor Pattern
9.3 Voltage Divider Pattern
9.3.1 Calculating the Voltages
9.3.2 Finding Resistor Ratios
9.3.3 Finding Resistor Values
9.3.4 General Considerations
9.4 The Pull-Up Resistor
9.5 Pull-Down Resistors
Apply What You Have Learned
Chapter 10: Understanding Power
10.1 Important Terms Related to Power
10.2 Power in Electronics
10.3 Component Power Limitations
10.4 Handling Power Dissipation with Heatsinks
10.5 Transforming Power
10.6 Amplifying Low-Power Signals
Apply What You Have Learned
Chapter 11: Integrated Circuits and Resistive Sensors
11.1 The Parts of an Integrated Circuit
11.2 The LM393 Voltage Comparator
11.3 The Importance and Problems of Datasheets
11.4 A Simple Circuit with the LM393
11.5 Resistive Sensors and Voltages
11.6 Sensing and Reacting to Darkness
Sources and Sinks
Apply What You Have Learned
Part II: Digital Electronics and Microcontrollers
Chapter 12: Using Logic ICs
12.1 Logic ICs
12.2 Getting a 5 V Source
12.3 Pull-Down Resistors
12.4 Combining Logic Circuits
12.5 Understanding Chip Names
Apply What You Have Learned
Chapter 13: Introduction to Microcontrollers
13.1 The ATmega328/P Chip
13.2 The Arduino Environment
13.3 The Arduino Uno
13.4 Programming the Arduino
Apply What You Have Learned
Chapter 14: Building Projects with Arduino
14.1 Powering Your Breadboard from an Arduino Uno
14.2 Wiring Inputs and Outputs to an Arduino Uno
14.3 A Simple Arduino Project with LEDs
14.4 Changing Functionality Without Rewiring
Apply What You Have Learned
Chapter 15: Analog Input and Output on an Arduino
15.1 Reading Analog Inputs
15.2 Analog Output with PWM
Apply What You Have Learned
Part III: Capacitors and Inductors
Chapter 16: Capacitors
16.1 What Is a Capacitor?
16.2 How Capacitors Work
16.3 Types of Capacitors
16.4 Charging and Discharging a Capacitor
16.5 Series and Parallel Capacitances
16.6 Capacitors and AC and DC
16.7 Using Capacitors in a Circuit
Chapter 17: Capacitors as Timers
17.1 Time Constants
17.2 Constructing a Simple Timer Circuit
17.3 Resetting Our Timer
Apply What You Have Learned
Chapter 18: Introduction to Oscillator Circuits
18.1 Oscillation Basics
18.2 The Importance of Oscillating Circuits
18.3 Building an Oscillator
18.4 Calculating On and Off Times with the 555
18.5 Choosing the Capacitor
Apply What You Have Learned
Chapter 19: Producing Sound with Oscillations
19.1 How Sound Is Produced by Speakers
19.2 Graphing Electricity
19.3 Outputting a Tone to Headphones
19.4 AC vs. DC
19.5 Using Capacitors to Separate AC and DC Components
19.6 Speaker Wattage
19.7 Sound Control
Apply What You Have Learned
Chapter 20: Inductors
20.1 Inductors, Coils, and Magnetic Flux
20.1.1 What Is an Inductor?
20.1.2 What Is Magnetic Flux?
20.1.3 What Is the Difference Between Electric and Magnetic Fields
20.2 Induced Voltages
20.3 Resisting Changes in Current
20.4 Analogy from Mechanics
20.5 Uses of Inductors
20.6 Inductive Kick
Apply What You Have Learned
Chapter 21: Inductors and Capacitors in Circuits
21.1 RL Circuits and Time Constants
21.2 Inductors and Capacitors as Filters
21.3 Parallel and Series Capacitors and Inductors
Apply What You Have Learned
Chapter 22: Reactance and Impedance
22.1 Reactance
22.2 Impedance
22.3 RLC Circuits
22.4 Ohm’s Law for AC Circuits
22.5 Resonant Frequencies of RLC Circuits
22.6 Low-Pass Filters
22.7 Converting a PWM Signal into a Voltage
Chapter 23: DC Motors
23.1 Theory of Operation
23.2 Important Facts About Motors
23.3 Using a Motor in a Circuit
23.4 Attaching Things to Motors
23.5 Bidirectional Motors
23.6 Servo Motors
23.7 Stepper Motors
Apply What You Have Learned
Part IV: Amplification Circuits
Chapter 24: Amplifying Power with Transistors
24.1 An Amplification Parable
24.2 Amplifying with Transistors
24.3 Parts of the BJT
24.4 NPN Transistor Operation Basics
Rule 1: The Transistor Is Off by Default
Rule 2: VBE Needs to Be 0.6 V to Turn the Transistor On
Rule 3: VBE Will Always Be Exactly 0.6 V When the Transistor Is On
Rule 4: The Collector Should Always Be More Positive Than the Emitter
Rule 5: When the Transistor Is On, ICE Is a Linear Amplification of IBE
Rule 6: The Transistor Cannot Amplify More Than the Collector Can Supply
Rule 7: If the Base Voltage Is Greater Than the Collector Voltage, the Transistor Is Saturated
24.5 The Transistor as a Switch
24.6 Connecting a Transistor to an Arduino Output
24.7 Stabilizing Transistor Beta With a Feedback Resistor
24.8 A Word of Caution
Apply What You Have Learned
Chapter 25: Transistor Voltage Amplifiers
25.1 Converting Current into Voltage with Ohm’s Law
25.2 Reading the Amplified Signal
25.3 Amplifying an Audio Signal
25.4 Adding a Second Stage
25.5 Using an Oscilloscope
Apply What You Have Learned
Chapter 26: Examining Partial Circuits
26.1 The Need for a Model
26.2 Calculating Thévenin Equivalent Values
26.3 Another Way of Calculating Thévenin Resistance
26.4 Finding the Thévenin Equivalent of an AC Circuit with Reactive Elements
26.5 Using Thévenin Equivalent Descriptions
26.6 Finding Thévenin Equivalent Circuits Experimentally
Apply What You Have Learned
Chapter 27: Using Field Effect Transistors for Switching and Logic Applications
27.1 Operation of a FET
27.2 The N-Channel Enhancement Mode MOSFET
27.3 Using a MOSFET
27.4 MOSFETs in Logic Circuits
Apply What You Have Learned
Chapter 28: Going Further
Appendix A:
Appendix B:
Electronics Symbols
Appendix C:
Integrated Circuit Naming Conventions
C.1 Logic Chip Basic Conventions
Appendix D:
More Math Than You Wanted to Know
D.1 Basic Formulas
D.1.1 Charge and Current Quantities
D.1.2 Volt Quantities
D.1.3 Resistance and Conductance Quantities
D.1.4 Ohm’s Law
D.1.5 Power
D.1.6 Capacitance
D.1.7 Inductance
D.2 Semiconductors
D.2.1 Diodes
D.3 DC Motor Calculations
D.4 555 Timer Oscillator Frequency Equation
D.5 Output Gain Calculations in BJT Common Emitter Applications
D.6 The Thévenin Formula
D.7 Electronics and Calculus
D.7.1 Current and Voltage
D.7.2 Capacitors and Inductors
D.7.3 Time Constants
Appendix E:
Simplified Datasheets for Common Devices
E.1 Batteries
E.1.1 Overview
E.1.2 Variations
E.1.3 Notes
E.2 Resistors
E.2.1 Overview
E.2.2 Finding a Resistor Value
E.3.1 Overview
E.3.2 Variations
E.3.3 Forward Voltage Drop
E.3.4 Usages
E.4 Capacitors
E.4.1 Overview
E.4.2 Variations
E.4.3 Finding Capacitance Values
E.5 Inductors
E.5.1 Overview
E.5.2 Uses
E.5.3 Inductive Kick
E.5.4 Inductor Color Codes
E.6.1 Overview
E.6.2 Variations
E.6.3 Pin Configuration
E.6.4 Design Considerations
E.7 YwRobot Power Module
E.7.1 Overview
E.7.2 Variations
E.7.3 Pin Configuration
E.7.4 Limitations
E.8 555 Timer
E.8.1 Overview
E.8.2 Variations
E.8.3 Pin Configuration
E.8.4 Specifications
E.8.5 Implementation Example
E.9 LM393 and LM339 Voltage Comparator
E.9.1 Overview
E.9.2 Variations
E.9.3 Specifications
E.10 CD4081 and 7408 Quad-AND Gate
E.10.1 Overview
E.10.2 Variations
E.10.3 Specifications (CD4081)
E.10.4 Specifications (7408)
E.11 CD4071 and 7432 Quad-OR Gate
E.11.1 Overview
E.11.2 Variations
E.11.3 Specifications (CD4071)
E.11.4 Specifications (7432)
E.12 CD4001 and 7402 Quad-NOR Gate
E.12.1 Overview
E.12.2 Variations
E.12.3 Specifications (CD4001)
E.12.4 Specifications (7402)
E.13 CD4011 and 7400 Quad-NAND Gate
E.13.1 Overview
E.13.2 Variations
E.13.3 Specifications (CD4011)
E.13.4 Specifications (7400)
E.14 CD4070 and 7486 Quad-XOR Gate
E.14.1 Overview
E.14.2 Variations
E.14.3 Specifications (CD4070)
E.14.4 Specifications (7486)
E.15 LM78xx Voltage Regulator
E.15.1 Overview
E.15.2 Variations
E.15.3 Specifications
E.15.4 Usage Notes

Product information

Publisher‏:‎Apress; 1st ed. edition (September 2, 2020)
Paperback‏:‎530 pages
Item Weight‏:‎1.78 pounds
Dimensions‏:‎6.14 x 1.07 x 9.21 inches


Download Electronics for Beginners: A Practical Introduction to Schematics, Circuits, and Microcontrollers Pdf Free:

You can easily download Electronics for Beginners: A Practical Introduction to Schematics, Circuits, and Microcontrollers PDF by clicking the link given below. If the PDF link is not responding, kindly inform us through comment section. We will fixed it soon.

Click here to download

 NOTE: We do not own copyrights to these books. We’re sharing this material with our audience ONLY for educational purpose. We highly encourage our visitors to purchase original books from the respected publishers. If someone with copyrights wants us to remove this content, If you feel that we have violated your copyrights, then please contact us immediately. please contact us. or Email: [email protected]

Leave A Reply

Your email address will not be published.

one × five =